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Objective 

• Support StarlingX on multiple OS distro’s providing equivalent functionality 
on each

• Initial Candidate OS’s: Centos (current), Ubuntu, Clear Linux



Overview

 Starting point is vanilla OS distribution packages 
required packages for StarlingX

 Modified OS packages built against the distro 
 Goal is to drive this to virtual zero 

 StarlingX packages are built against each distro

 Create a OS abstraction layer - OSAL
 Bridge between the common code and OS to translate the 

requests to OS dependent function
 This will be needed for subsystems such as patching 

 Containerize the infrastructure to provide an OS 
agnostic packaging format

 Ideally everything outside of the base OS would move to 
containers 

 Potentially a set of images built against one distro can be 
used for all 
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Current OS Distro 

• StarlingX is currently not based on a pure centos distribution: 

• Skinny distribution, minimum set of packages 

• Number of modified distro packages (100-150)

• Need to drive this to virtual zero 

• Packages that are built out of tree to pick up newer drivers, qemu etc.

• Some required packages are not even provided by Centos distro 



Key Building Block Alignment 

• In order to ensure maximum feature alignment and minimize validation 
costs, it is recommended to align on versions of key packages: 

• python

• kubernetes & friends 

• libvirt/QEMU 

• networking drivers

• OVS-DPDK 

• CEPH

• Openstack version

• Others ?

• These would need to be built out of tree against each distro 



Other Considerations

• All OS’s will not provide equivalent functionality

• For instance Ubuntu does not provide a RT kernel, therefore the current low 
latency compute profile does not make sense for it



Build Environment 

• Need a build environment to build packages against each supported distro

• Need to be able to build patched packages for each distro

• Patches will likely be different as the package versions will vary 

• Build environment needs to lock down package versions versus letting float

• At the very least this is required for release loads



Package Customizations

• Need to reduce the number of customizations – upstreaming, refactoring, 
deprecation

• For the remainder

• Refactor patches for each distro and provide custom per distro packages

• Very expensive if this ends up being a big number 



Containerizing the infrastructure 

• Containerize the infrastructure to provide a consistent packaging format 
across all distro’s

• Containerizing openstack is the initial step

• This avoids having per distro package management and s/w live cycle 
implementations

• Build once and use across all ? 

• Container images built against one distro can be used for all 



Package Management 

• Centos uses rpm with yum or smart as the package manager  

• Ubuntu uses deb with apt as the package manager 

• Software management functions such as patching will need to be 
abstracted away from the underlying package management

• Patching would need to be updated to abstract away the package manager

• Interfaces with the correct package manger based on distro type



Installer 

• Each distro will have it’s own installer that will need to be integrated into 
StarlingX

• Anaconda for centos which has been extended by StarlingX

• Kickstart equivalents for other installers would need to be updated



Initialization

• All considered distro’s use systemd


