
Multi-OS Discussion

1



Objective 

• Support StarlingX on multiple OS distro’s providing equivalent functionality 
on each

• Initial Candidate OS’s: Centos (current), Ubuntu, Clear Linux



Overview

 Starting point is vanilla OS distribution packages 
required packages for StarlingX

 Modified OS packages built against the distro 
 Goal is to drive this to virtual zero 

 StarlingX packages are built against each distro

 Create a OS abstraction layer - OSAL
 Bridge between the common code and OS to translate the 

requests to OS dependent function
 This will be needed for subsystems such as patching 

 Containerize the infrastructure to provide an OS 
agnostic packaging format

 Ideally everything outside of the base OS would move to 
containers 

 Potentially a set of images built against one distro can be 
used for all 

centos ubuntu
Clear
Linux

StarlingX 
packages

StarlingX 
packages

StarlingX 
packages

Container Images Container Images Container Images

OSAL OSAL OSAL

Modified distro 
packages

Modified distro 
packages

Modified distro 
packages



Current OS Distro 

• StarlingX is currently not based on a pure centos distribution: 

• Skinny distribution, minimum set of packages 

• Number of modified distro packages (100-150)

• Need to drive this to virtual zero 

• Packages that are built out of tree to pick up newer drivers, qemu etc.

• Some required packages are not even provided by Centos distro 



Key Building Block Alignment 

• In order to ensure maximum feature alignment and minimize validation 
costs, it is recommended to align on versions of key packages: 

• python

• kubernetes & friends 

• libvirt/QEMU 

• networking drivers

• OVS-DPDK 

• CEPH

• Openstack version

• Others ?

• These would need to be built out of tree against each distro 



Other Considerations

• All OS’s will not provide equivalent functionality

• For instance Ubuntu does not provide a RT kernel, therefore the current low 
latency compute profile does not make sense for it



Build Environment 

• Need a build environment to build packages against each supported distro

• Need to be able to build patched packages for each distro

• Patches will likely be different as the package versions will vary 

• Build environment needs to lock down package versions versus letting float

• At the very least this is required for release loads



Package Customizations

• Need to reduce the number of customizations – upstreaming, refactoring, 
deprecation

• For the remainder

• Refactor patches for each distro and provide custom per distro packages

• Very expensive if this ends up being a big number 



Containerizing the infrastructure 

• Containerize the infrastructure to provide a consistent packaging format 
across all distro’s

• Containerizing openstack is the initial step

• This avoids having per distro package management and s/w live cycle 
implementations

• Build once and use across all ? 

• Container images built against one distro can be used for all 



Package Management 

• Centos uses rpm with yum or smart as the package manager  

• Ubuntu uses deb with apt as the package manager 

• Software management functions such as patching will need to be 
abstracted away from the underlying package management

• Patching would need to be updated to abstract away the package manager

• Interfaces with the correct package manger based on distro type



Installer 

• Each distro will have it’s own installer that will need to be integrated into 
StarlingX

• Anaconda for centos which has been extended by StarlingX

• Kickstart equivalents for other installers would need to be updated



Initialization

• All considered distro’s use systemd


