[bookmark: _GoBack]..
 This work is licensed under a Creative Commons Attribution 3.0 Unported
 License.

 http://creativecommons.org/licenses/by/3.0/legalcode

================================
Network Segment Range Management
================================

Launchpad blueprint:
https://blueprints.launchpad.net/neutron/+spec/network-segment-range-management

Currently, network segment ranges are configured as an entry in ML2 config
file [1]_ that is statically defined for tenant network allocation and
therefore must be managed as part of the host deployment and management. When a
normal tenant user creates a network, Neutron assigns the next free
segmentation ID (VLAN ID, VNI etc.) from the configured segment ranges; only an
administrator can assign a specific segment ID via the provider extension.

This spec introduces an extension which exposes the segment range management to
be administered via the neutron API. In addition, it introduces the ability for
the administrator to control the segment ranges globally or on a per-tenant
basis.

Problem Description
===================

Self-service networks, aka tenant networks primarily enable general
(non-privileged) projects to manage networks without involving administrators.
These networks are entirely virtual and require virtual routers to interact
with provider and external networks such as the Internet. In most cases,
self-service networks use overlay protocols such as VXLAN or GRE because they
can support many more networks than layer-2 segmentation using VLAN tagging
(802.1q) which typically requires additional configuration of physical network
infrastructure. Nevertheless, in some other cases, OpenStack Networking also
supports the self-service network isolation using Flat and VLAN etc. [2]_.

The current neutron implementation sets entries in a config file to statically
define network segment ranges for tenant network allocation. It does not
support another dynamic way (e.g. at the API level) after initialization.
Neutron services have to be restarted in order to make any change to the
network segment ranges take effect. However, cloud network infrastructure
deployments can be complex and non-homogeneous. This rigidity brings about
complexity and difficulty to cloud administrators when dealing with varied
requirements.

Network segment range management provides an added level of flexibility at the
API level which enables full network orchestration of all the types of tenant
networks using standard REST API rather than needing to interact with the host
configuration directly. Apart from this, for VLAN tenant networks especially,
network segment range management enables a control over the management of the
cloud/network infrastructure for tenant networks. It also facilitates
per-tenant assignments (including shared). This enables a cloud administrator
to directly control the VLAN tenant segment mapping, and ultimately the
underlying layer2/layer3 path of the tenant traffic without exposing specific
network segment range information to the tenant user. The allocations for
tenant networks will be allocated from the assigned projects of the network
segment ranges.

Several example use cases are demonstrated below.

UseCase I

Enable cloud administrators to create and assign per-tenant network segment
ranges. This gives an administrator the privilege to manage the underlying
network segment ranges. When a tenant creates a network, it will allocate a
segment ID from the segment ranges assigned to the tenant or shared if no
tenant specific range available. It helps map the VMs created by that tenant to
map with an explicit set of existing networks, for privacy or dedicated
business connection needs. One example illustration is shown below:

::

 +------------------+
 | Physical Network |
 +------------+---------+ Infrastructures +-------------------+
 | | +---------+--------+ | |
 | | | |
 | | | |
 +----+----+ +----+----+ +----+----+ +----+----+
 | Tenant 0| | Tenant 1|.........| Tenant k|.................| Tenant n|
 +----+----+ +----+----+ +----+----+ +----+----+
 | | | |
 | | | |
 + range-0 + range-1 + range-k1 + range-n
 range-k2

* One cloud is connecting and mapping with a large number of existing l2
 physical network infrastructures.

* n+1 tenants: Tenant 0, ...Tenant k..., Tenant n are available in this cloud.

* Each tenant needs to be assigned with one (or more) network segment range(s)
 respectively (range-0, ...range-k1..., ...range-k2..., range-n) by the cloud
 administrator, so that the networks it creates can reach the corresponding
 dedicated physical network infrastructure it would like to connect to
 according to different business requirements.

A possible workflow is presented as follows:

1. Cloud administrator lists tenants available in the cloud:

 * openstack project list

2. Cloud administrator lists all network segment ranges existing:

 * openstack network segment range list

3. If no network segment range created for one target tenant, then cloud
 administrator could create one for it:

 * openstack network segment range create
 --name <network_segment_range_name>
 --shared <shared>
 --project <project_id>
 --network_type <network_type>
 --physical_network <physical_network_name>
 --range <network_segment_range>

4. Login as normal tenant user, create tenant networks by following the usual
 steps applicable [3]_:

 * openstack create network net

 * The network created will automatically allocate a segment ID from the
 segment ranges assigned to the tenant (per step 3) or shared if no tenant
 specific range available.

This helps decide on choosing the correct VLAN mapping when multiple tenants
exist. It also provides the possibility to dynamically create a network segment
range for each tenant, even if it's not pre-deployed in the host configuration.

UseCase II

In some VLAN tenant network scenarios, it is not uncommon that the existing
physical network infrastructures’ segment configurations have been changed.
Thus, it is a must for cloud administrators to update the VLAN allocation range
for tenant networks at the same time in order to keep aligned with the
connection or mapping. Hence offering the ability to dynamically manage segment
ranges of self-service networks, as this spec proposes, is imperative for VLAN
tenant networks and is definitely a plus for other overlay tenant networks.

A possible workflow is presented as follows:

1. Cloud administrator lists all network segment ranges existing and
 identifies the one needs to update:

 * openstack network segment range list

2. Cloud administrator updates a network segment range based on the actual
 requirement changing:

 * openstack network segment range update
 --name <network_segment_range_name>
 --range <network_segment_range>

3. Login as normal tenant user, create tenant networks by following the usual
 steps applicable [3]_:

 * openstack create network net

 * The network created will automatically allocate free segment ID from the
 updated network segment ranges available.

Proposed Change
===============

To address the above Use-cases, this spec introduces a new resource called
network_segment_ranges together with its implementation.

Currently by default, all pre-configured segment information (e.g.
network_vlan_ranges, vni_ranges etc. defined in [1]_) is loaded into
"ml2_xxx_allocations" DBs by ML2 type drivers once the Neutron services are up.
For all self-service networks’ segmentation ID sync, allocations and
releases, they will be based on this information.

All this information will be maintained. The network segment ranges introduced
in this spec will augment this initial allocation that is loaded from the
configuration. It proposes an API way that user with administrative privilege
can create and manage various network segment ranges for all network types
supported by ML2.

Data Model Impact

The following new table is added as part of the network network management
feature::

 CREATE TABLE network_segment_ranges (
 id CHAR(36) NOT NULL PRI KEY,
 name VARCHAR(255),
 shared BOOL NOT NULL,
 project_id VARCHAR(255) NOT NULL,
 network_type ENUM('flat', 'vlan', 'vxlan', 'gre', 'geneve') NOT NULL,
 physical_network VARCHAR(64),
 minimum INT,
 maximum INT
);

For different network types, the validation strategies and responses should
have the following variants:

* FLAT: minimum and maximum integers input are not allowed. A forbidden or
 failed response should return if one of which is given.

* VLAN: minimum = 1, maximum = 4094.

* VXLAN: minimum = 1, maximum = 2 ** 24 - 1.

* GRE: minimum = 1, maximum = 2 ** 32 - 1.

* Geneve: minimum = 1, maximum = 2 ** 24 - 1.

Notes: Other validation rules like minimum <= maximum are always applicable and
should be paid attention to. Most of the cited above have been supported in
neutron_lib.plugins.utils.

Mixin classes to add the network segment range management extension should be
provided. The DB operation logic should be handled by the ML2 type manager and
the type drivers. For the values present in the existing ML2 configuration
options [1]_ (e.g. ml2_type_vlan, ml2_type_vxlan etc.), they will be loaded as
`shared` segment ranges into segment_range DB in order to provide backward
compatibility for initial deployment when this extension is present.

Resource Extension

The following new resource is being introduced and its attributes maps would be
like:

.. code-block:: python

 NETWORK_TYPE_LIST = [TYPE_FLAT, TYPE_VLAN, TYPE_VXLAN, TYPE_GRE, TYPE_GENEVE]
 RESOURCE_ATTRIBUTE_MAPS = {
 'network_segment_ranges': {
 'id': {'allow_post': False, 'allow_put': False, 'is_visible': True},
 'name': {'allow_post': True, 'allow_put': True, 'is_visible': True,
 'default': None,
 'validate': {
 'type:not_empty_string': db_const.NAME_FIELD_SIZE}},
 'shared': {'allow_post': True, 'allow_put': False,
 'convert_to': converters.convert_to_boolean,
 'is_visible': True, 'default': True},
 'project_id': {'allow_post': True, 'allow_put': False,
 'validate': {
 'type:string': db_const.PROJECT_ID_FIELD_SIZE},
 'required_by_policy': True,
 'is_filter': True,
 'is_sort_key': True,
 'is_visible': True},
 'network_type': {'allow_post': True, 'allow_put': False,
 'validate': {'type:values': NETWORK_TYPE_LIST},
 'default': constants.ATTR_NOT_SPECIFIED,
 'enforce_policy': True,
 'is_filter': True,
 'is_visible': True},
 'physical_network': {'allow_post': True, 'allow_put': False,
 'validate': {
 'type:string': PHYSICAL_NETWORK_MAX_LEN},
 'default': constants.ATTR_NOT_SPECIFIED,
 'enforce_policy': True,
 'is_filter': True,
 'is_visible': True},
 'minimum': {'allow_post': True, 'allow_put': True,
 'convert_to': converters.convert_to_int, 'is_visible': True},
 'maximum': {'allow_post': True, 'allow_put': True,
 'convert_to': converters.convert_to_int, 'is_visible': True},
 },
 }

REST API Impact

The idea is to add a new resource extension with the below defined attributes.
Resource extension network_segment_ranges:
+-----------------+--------+-----+--------+-----------+-----------------------+
| Attribute Name | Type | Req | CRUD | Default | Description |
| | | | | Value | |
+=================+========+=====+========+===========+=======================+
| id | String | N/A | R | | Identifier of network |
| | | | | | segment range |
+-----------------+--------+-----+--------+-----------+-----------------------+
| name | String | No | CRU | None | Name of network |
| | | | | | segment range |
+-----------------+--------+-----+--------+-----------+-----------------------+
| shared | Bool | Yes | CR | False | Shared with other |
| | | | | | projects |
+-----------------+--------+-----+--------+-----------+-----------------------+
project_id	String	No	CR	Current	Owner of network
				project_id	range. Optional when
					`shared` is True.
+-----------------+--------+-----+--------+-----------+-----------------------+					
network_type	Enum	Yes	CR	1st tenant	Flat, VLAN, VxLAN,
				network	GRE, Geneve
				type [1]_	
+-----------------+--------+-----+--------+-----------+-----------------------+					
physical_network	String	No	CR	None	Optional. Only
					applicable for Flat,
					VLAN.
+-----------------+--------+-----+--------+-----------+-----------------------+					
minimum	INT	Yes	CRU	None	Floor integer of the
					segment range
+-----------------+--------+-----+--------+-----------+-----------------------+					
maximum	INT	Yes	CRU	None	Ceiling integer of the
					segment range
+-----------------+--------+-----+--------+-----------+-----------------------+

To specify a range with single item, min equals to max can do the trick. For
discrete segment ranges of one given network type, they are represented as
several ones, each with a min and a max.

The following network segment range management Rest APIs will be provided in
line with the new resources previously introduced:

* List all network segment ranges.
 GET /v2.0/network_segment_ranges

::

 GET /v2.0/network_segment_ranges
 Accept: application/json
 {
 "network_segment_ranges": [
 {
 "id": "d23abc8d-2991-4a55-ba98-2aaea84cc72f",
 "name": "network_segment_range_physnet1",
 "shared": False,
 "project_id": "45977fa2dbd7482098dd68d0d8970117",
 "network_type": "vlan",
 "physical_network": "physnet1",
 "minimum": 100,
 "maximum": 200,
 }
]
 }

* List a network segment range information.
 GET /v2.0/network_segment_ranges/<network_segment_range-id>

::

 GET /v2.0/network_segment_ranges/d23abc8d-2991-4a55-ba98-2aaea84cc72f
 Accept: application/json
 {
 "network_segment_range": {
 "id": "d23abc8d-2991-4a55-ba98-2aaea84cc72f",
 "name": "network_segment_range_physnet1",
 "shared": False,
 "project_id": "45977fa2dbd7482098dd68d0d8970117",
 "network_type": "vlan",
 "physical_network": "physnet1",
 "minimum": 100,
 "maximum": 200,
 }
 }

* Create a network segment range for a given tenant.
 POST /v2.0/network_segment_ranges/<network_segment_range-id>

::

 POST /v2.0/network_segment_ranges/d23abc8d-2991-4a55-ba98-2aaea84cc72f
 Accept: application/json
 {
 "network_segment_range": {
 "name": "network_segment_range_physnet1",
 "shared": False,
 "project_id": "45977fa2dbd7482098dd68d0d8970117",
 "network_type": "vlan",
 "physical_network": "physnet1",
 "minimum": 100,
 "maximum": 200,
 }
 }

* Delete a network segment range by id.
 DELETE /v2.0/network_segment_ranges/<network_segment_range-id>

::

 DELETE /v2.0/network_segment_ranges/d23abc8d-2991-4a55-ba98-2aaea84cc72f
 Accept: application/json

* Update a network segment range with given data.
 PUT /v2.0/network_segment_ranges/<network_segment_range-id>

::

 PUT /v2.0/network_segment_ranges/d23abc8d-2991-4a55-ba98-2aaea84cc72f
 Accept: application/json
 {
 "network_segment_range": {
 "minimum": 200,
 "maximum": 300,
 }
 }

Command Line Client Impact

Openstack Client would add network segment range management related CLIs. They
should be admin only CLI commands. For example:

* openstack network segment range list

* openstack network segment range show <network_segment_range-id>

* openstack network segment range create
 [--name <range_name>]
 [--shared <shared>]
 [--project_id <project_id>]
 [--network_type <network_type>]
 [--physical_network <physical_network>]
 [--minimum <range_minimum>]
 [--maximum <range_maximum>]
 <network_segment_range>

 * Argument --name is optional; --project_id is optional when `shared` is
 True; --physical_network is optional and only applicable for FLAT and VLAN.
 All the other parameters should be required.

* openstack network segment range update [--name <range_name>]
 [--minimum <range_minimum>] [--maximum <range_maximum>] <project_id>

* openstack network segment range delete <network_segment_range-id>

Other Impact

* ML2 plugin, plugin manager and type drivers will need to be refined and added
 with several new methods correspondingly in order to support this feature.

* The existing ML2 configuration will populate the proposed
 network_segment_ranges as a shared range. When this extension is loaded, a
 change is expected in the processing of the ML2 configuration.

* Validation work is needed for quite a few cases, including but not limited
 to:

 * Admin privilege should always be checked before performing any network
 segment range operation cited previously.

 * When updating or deleting one network segment range, the operation should
 be rejected if one of the network segments is in use.

 * We're maintaining the consistency by "ml2_xxx_allocations" DBs and relying
 on them to do the eventual validation and the underlying segment
 allocation. This means network segment ranges can be configured before
 agents are actually mapped to specific physical network mappings.

* Theoretically, multiple network segment ranges can be created for one
 tenant (while one network segment range cannot be owned by several tenants).
 If a tenant has more than one segment range configured, it would pick up the
 next free segmentation ID (VLAN ID, VNI etc.) from all its owned network
 segment ranges.

 Backwards compatibility comes from having the default behavior of segment
 ranges being assigned as a `shared` resource to tenants. If both of `shared`
 and `specified` segment range resources are exposed to a tenant, the
 `specified` should override the `shared`.

* The extension will be optional (an option in [4]_ with functionality disabled
 by default should be added), in which case the existing ML2 configuration
 options will be applicable.

Other End User Impact

Users with admin privilege will be able to dynamically manage network segment
ranges for all ML2 supported network types, all tenants and tenant networks.
If no dynamic network segment range is created for a given tenant, or the
feature is disabled due to the backwards compatibility consideration, there
will be no impact to end users.

Other Deployer Impact

Deployers should have an option available to enable or disable this
functionality so that they can continue to use the configuration file as
before. They also need to be strongly warned to update their operational
documentation to ensure that the new network segment information is managed
using the correct facility. If the feature is disabled, nothing at the
deployment level would be impacted.

Performance Impact

Performance testing must be conducted to see what is the overhead of enabling
this feature, of course that if the feature is disabled no performance impact
should be noticed.

Implementation
==============

Assignee(s)

* Kailun Qin <kailun.qin@intel.com>

Work Items

* Adjust the DB model and add the new table.
* Extend current API.
* Modify type drivers as well as all related references.
* Add related tests.
* Add CLI openstackclient.
* Documentation.

Dependencies
============

None

Testing
=======

Unit tests, functional tests, API tests and scenario tests are necessary.

Documentation Impact
====================

The Neutron API reference will need to be updated.

References
==========

.. [1] /etc/neutron/plugins/ml2/ml2_conf.ini

.. [2] `OpenStack Networking`
 https://docs.openstack.org/neutron/latest/admin/intro-os-networking.html

.. [3] `Self-service network`
 https://docs.openstack.org/newton/install-guide-rdo/launch-instance-networks-selfservice.html

.. [4] /etc/neutron/neutron.conf

Related Information

Neutron v2 API: https://developer.openstack.org/api-ref/network/v2/

