
PyTest Overview
Dec. 22, 2018

A fully featured Cloud for the distributed Edge



Criteria for Choosing Test Framework

• Maintainability

• Debugability

• Flexibility

• Scalability



Easy to Write and Maintain Tests

• No-boilerplate (no test class instantiation)

• Simple syntax (asserts)

• Parametrizing tests (dynamically rename test, e.g., remote_cli)

• Skip test dynamically

• Strong support for test state management via setup/teardown hooks (4 scopes)

• Can scale up (system test) or down (unit test)



Flexibility in Test Execution

• Automatic collection of tests with decorator or string in test name

• Can ignore/deselect tests

• Can be called from python code



Strong Debugging Support

• Stop after first (N) failure optionally w. or w/o teardown

• Informative traceback

• Run pdb on failed tests 

• Customizable xml and plain text reports 



Backup

• Pass different data types to function param. E.g., None, list, dict, list of dict, function, etc.

• Can make use of existing openstack testcases. E.g., horizon



Comparison Chart
Test 
Framework

Main Advantages Main Disadvantages Best Application

Robot 1. Use keyword driven strategy, where keywords are 
written in programing language such as python, and 
testcases are using non-programing language, which 
allows non-programmer to easily add test cases using 
existing keywords.
2. Pretty html report and log, and very good debugging 
info in the log.

1. New syntax needs to be learned to write test cases.
2. Limited support for what can be done, etc, no nested loop in test 

case, limited support for parametrizing test
3. Cannot skip a test
4. No global setup/teardown to share between multiple suites

1. Keyword driven acceptance tests
2. Coding skills vary among the team, where keywords 
can be developed by programmers while test case can 
be contributed by anyone using GUI/tsv/txt

Pytest 1. Very good tracebacks when test fails.
2. Flexible and powerful test fixtures 
(setups/teardown). Other two frameworks only support 
1 test setup 1 suite/class level setup, while for pytest, 
you can use multiple test fixtures at the same time. This 
allows sharing fixtures across test classes/modules.
3. Easy to customize the framework, such as putting 
custom info to the report.
4. no-boilerplate compared to Unittest
5. Can convert openstack testcases such as tempest test 
easily

1. Cannot easily control the order of the testcases 1. Anything does not require strict order of test cases

Unittest 1. Included in python standard library
2. Probably minimal learning curve for most people in 
community

1. Overhead/boilerplate. Test class has to be defined for every test 
case, syntax not as simple as pytest
2. Does not support parametrized test
3. No global setup/teardown to share between multiple test classes

1. unit test and smaller scaled functional test cases


