Analysis Report for patch a38f899

neutron/agent/dhcp/agent.py
@@ -535,6 +535,8 @@ class DhcpAgent(manager.Manager):
 LOG.debug("Agent IPs on network %s changed from %s to %s",
 network.id, old_ips, new_ips)
 driver_action = 'restart'
+ elif not old_ips and not new_ips:	Comment by Kailun Qin: Upstream seems to not take the scenario when the port creation without an IP address in neither of of the cache nor the payload into consideration.
This part of fix seems reasonable to me.
Would you please kindly clarify when this scenario might be seen in production?
+ driver_action = 'disable'
 self.cache.put_port(updated_port)
 # NOTE(alegacy): the port may no longer have any IP addresses so if
 # that's the case we need to use the old ones in order to determine

[bookmark: _GoBack]

neutron/agent/linux/dhcp.py
@@ -274,7 +274,7 @@ class DhcpLocalProcess(DhcpBase):
 self._get_process_manager().disable()
 if not retain_port:
 self._destroy_namespace_and_port()
- self._remove_config_files()	Comment by Kailun Qin: Can be addressed by https://review.openstack.org/372817, which introduces a clean-up for all ports inside of
a namespace on a 'setup' failure before reraising the exception.
+ self._remove_config_files()

 def _destroy_namespace_and_port(self):
 try:
@@ -287,13 +287,11 @@ class DhcpLocalProcess(DhcpBase):
 if not ns_ip.netns.exists(self.network.namespace):
 LOG.debug("Namespace already deleted: %s", self.network.namespace)
 return
- if not ns_ip.namespace_is_empty():	Comment by Kailun Qin: Related w/ patch c85f044, which introduced a custom extension to implement VLAN tagged guest subnets. This feature was not supported/dropped later by Wind River (c28fd0) and replaced by configuring port trunks where necessary.
Thus, no need to upstream for this part.
- # Since the namespace is shared amongst all of the VLAN
- # tagged subnets on the network do not delete it unless no
- # other subnets are using it
- return
 try:
- ns_ip.netns.delete(self.network.namespace)	Comment by Kailun Qin: Same as above.
+ # Since the namespace is shared amongst all of the VLAN tagged
+ # subnets on the network do not delete it unless no other subnets
+ # are using it
+ ns_ip.garbage_collect_namespace()
 except RuntimeError:
 LOG.warning('Failed trying to delete namespace: %s',
 self.network.namespace)
@@ -550,6 +548,10 @@ class Dnsmasq(DhcpLocalProcess):
 self._output_addn_hosts_file()
 self._output_opts_file()

+ def _namespace_created(self):	Comment by Kailun Qin: Same as the below comment.
+ ip_wrapper = ip_lib.IPWrapper()
+ return ip_wrapper.netns.exists(self.network.namespace)
+
 def reload_allocations(self):
 """Rebuild the dnsmasq config and signal the dnsmasq to reload."""

@@ -565,6 +567,10 @@ class Dnsmasq(DhcpLocalProcess):
 LOG.debug('Agent does not have an interface on this network '
 'anymore, skipping reload: %s', self.network.id)
 return
+ elif not self._namespace_created():	Comment by Kailun Qin: If the port is updated after creation to no longer have an IP address then 'reload_allocations' action is invoked instead of the 'disabled' action.
We should fail the request if the namespace does not exist. The fix seems valid to me.
+ LOG.debug('Cannot reload allocations prior to namespace '
+ 'creation for network %s', self.network.id)
+ raise exceptions.Conflict()

 self._release_unused_leases()
 self._spawn_or_reload_process(reload_with_HUP=True)
@@ -1480,6 +1486,8 @@ class DeviceManager(object):
 # we don't care about any ips on subnets irrelevant
 # to us (e.g. auto ipv6 addresses)
 if fixed_ip.subnet_id in dhcp_subnets]
+ if not fixed_ips and not self.driver.use_gateway_ips:	Comment by Kailun Qin: Can be addressed by https://review.openstack.org/375791.
+ raise exceptions.Conflict()

 ips = [DictModel(item) if isinstance(item, dict) else item
 for item in fixed_ips]

